Wednesday, August 3, 2011

Astrolabe

An astrolabe (Greek: ἁστρολάβον astrolabon, "star-taker")[1] is an elaborate inclinometer, historically used by astronomers, navigators, and astrologers. Its many uses include locating and predicting the positions of the Sun, Moon, planets, and stars, determining local time given local latitude and vice-versa, surveying, triangulation, and to cast horoscopes. It was used in Classical Antiquity, through the Islamic Golden Age, the European Middle Ages and Renaissance for all these purposes. In the Islamic world, it was also used to calculate the Qibla and to find the times for Salah, prayers.

Astrolabes were further developed in the medieval Islamic world, where Muslim astronomers introduced angular scales to the astrolabe,[6] adding circles indicating azimuths on the horizon.[7] It was widely used throughout the Muslim world, chiefly as an aid to navigation and as a way of finding the Qibla, the direction of Mecca. The first person credited with building the astrolabe in the Islamic world is reportedly the 8th century mathematician Muhammad al-Fazari.[8] The mathematical background was established by the Muslim astronomer Muhammad ibn Jābir al-Harrānī al-Battānī (Albatenius) in his treatise Kitab az-Zij (ca. 920 AD), which was translated into Latin by Plato Tiburtinus (De Motu Stellarum). The earliest surviving dated astrolabe is dated AH 315 (927/8 AD). In the Islamic world, astrolabes were used to find the times of sunrise and the rising of fixed stars, to help schedule morning prayers (salat). In the 10th century, al-Sufi first described over 1,000 different uses of an astrolabe, in areas as diverse as astronomy, astrology, horoscopes, navigation, surveying, timekeeping, prayer, Salah, Qibla, etc.[9]

The spherical astrolabe, a variation of both the astrolabe and the armillary sphere, was invented during the Middle Ages by astronomers and inventors in the Islamic world.[10] The earliest description of the spherical astrolabe dates back to Al-Nayrizi (fl. 892–902). In the 12th century, Sharaf al-Dīn al-Tūsī invented the linear astrolabe, sometimes called the "staff of al-Tusi," which was "a simple wooden rod with graduated markings but without sights. It was furnished with a plumb line and a double chord for making angular measurements and bore a perforated pointer."[11] The first geared mechanical astrolabe was later invented by Abi Bakr of Isfahan in 1235.[12]

Peter of Maricourt, in the last half of the 13th century, also wrote a treatise on the construction and use of a universal astrolabe (Nova compositio astrolabii particularis). Universal astrolabes can be found at the History of Science Museum in Oxford.
The English author Geoffrey Chaucer (ca. 1343–1400) compiled a treatise on the astrolabe for his son, mainly based on Messahalla. The same source was translated by the French astronomer and astrologer Pelerin de Prusse and others. The first printed book on the astrolabe was Composition and Use of Astrolabe by Cristannus de Prachaticz, also using Messahalla, but relatively original.

In 1370, the first Indian treatise on the astrolabe was written by the Jain astronomer Mahendra Suri.[13]
The first known metal astrolabe known in Western Europe was developed in the 15th century by Rabbi Abraham Zacuto in Lisbon. Metal astrolabes improved on the accuracy of their wooden precursors.[citation needed] In the 15th century, the French instrument-maker Jean Fusoris (ca. 1365–1436) also started selling astrolabes in his shop in Paris, along with portable sundials and other popular scientific gadgets of the day. Finally, one more special example of craftsmanship in the early 15th century Europe is the astrolabe dated 1420, designed by Antonius de Pacento and made by Dominicus de Lanzano.[14]

In the 16th century, Johannes Stöffler published Elucidatio fabricae ususque astrolabii, a manual of the construction and use of the astrolabe. Four identical 16th century astrolabes made by Georg Hartmann provide some of the earliest evidence for batch production by division of labor.

An astrolabe consists of a disk, called the mater (mother), which is deep enough to hold one or more flat plates called tympans, or climates. A tympan is made for a specific latitude and is engraved with a stereographic projection of circles denoting azimuth and altitude and representing the portion of the celestial sphere above the local horizon. The rim of the mater is typically graduated into hours of time, degrees of arc, or both. Above the mater and tympan, the rete, a framework bearing a projection of the ecliptic plane and several pointers indicating the positions of the brightest stars, is free to rotate. Some astrolabes have a narrow rule or label which rotates over the rete, and may be marked with a scale of declinations.
The rete, representing the sky, functions as a star chart. When it is rotated, the stars and the ecliptic move over the projection of the coordinates on the tympan. One complete rotation corresponds to the passage of a day. The astrolabe is therefore a predecessor of the modern planisphere.

On the back of the mater there is often engraved a number of scales that are useful in the astrolabe's various applications; these vary from designer to designer, but might include curves for time conversions, a calendar for converting the day of the month to the sun's position on the ecliptic, trigonometric scales, and a graduation of 360 degrees around the back edge. The alidade is attached to the back face. An alidade can be seen in the lower right illustration of the Persian astrolabe above. When the astrolabe is held vertically, the alidade can be rotated and the sun or a star sighted along its length, so that its altitude in degrees can be read ("taken") from the graduated edge of the astrolabe; hence the word's Greek roots: "astron" (ἄστρον) = star + "lab-" (λαβ-) = to take.


Mariam al-Astrulabi was a 10th century Syrian astronomer. She was a highly skilled astrolabe maker who continued her father’s work of making astrolabes throughout her life.

No comments:

Post a Comment